Вернуться   •   Содержание книги   •   Скачать   •   Дальше

Волоконная оптика. Теория и практика
Дэвид Бейли, Эдвин Райт

2.3.2. Затухание сигнала

Когда сигнал проходит вдоль канала связи, его амплитуда уменьшается, поскольку физическая среда сопротивляется потоку электрической или электромагнитной энергии. Этот эффект известен как затухание сигнала. При передаче электрических сигналов некоторые материалы, такие, как медь, являются более эффективными проводниками, чем другие. Однако все проводники содержат примеси, которые сопротивляются движению o образующих электрический ток электронов. Сопротивление проводников вызывает преобразование некоторой части электрической энергии сигнала в тепловую энергию по мере продвижения сигнала по кабелю, что ведет к постоянному снижению уровня электрического сигнала. Затухание сигнала выражается потерей мощности сигнала на единицу длины кабеля, обычно в децибелах на километр (дБ/км).

График иллюстрирующий затухание сигнала
Рис. 2.5. Затухание сигнала

Для затухания устанавливается предел для максимальной длины канала связи. Это делается для того, чтобы гарантировать, что прибывающий на приемник сигнал обладает достаточной амплитудой для надежного распознавания и корректной интерпретации. Если канал превышает эту максимальную длину, на его протяжении для восстановления приемлемого уровня сигнала должны использоваться усилители или повторители (repeater).

Повторители сигнала
Рис. 2.6. Повторители сигнала

Затухание сигнала увеличивается с ростом частоты. Это вызывает искажение реального сигнала, содержащего диапазон частот. Например, у цифрового сигнала есть очень острый, быстро растущий фронт импульса, создающий высокочастотный компонент. Чем острее (быстрее) подъем, тем больше будет компонент частоты. Это показано на рис. 2.5, где период фронта ослабленных сигналов прогрессивно увеличивается по мере прохождения сигнала по кабелю из-за большего затухания высокочастотных компонент. Эту проблему можно преодолеть использованием специальных усилителей (эквалайзеров), которые усиливают подверженные большему затуханию высокие частоты.

Свет также затухает при прохождений сквозь стекло во многом по тем же причинам. Электромагнитная энергия (свет) поглощается из-за естественного сопротивления стекла.

2.3.3. Полоса пропускания канала

Количество информации, которую канал может передать за данный период времени, определяется его способностью обработать скорость изменения сигнала> то есть его частоту. Аналоговый сигнал меняет частоту от минимальной до максимальной, и их разница составляет ширину спектра частот сигнала. Полоса пропускания (bandwidth) аналогового канала представляет собой разницу между максимальной и минимальной частотами, которые могут быть надежно переданы каналом. Обычно это частоты, на которых сигнал теряет половину своей мощности по сравнению с уровнями частот в середине диапазона или с* уровнями частот на входе канала; эти частоты обозначаются как точки 3 дБ. В последнем случае полоса пропускания известна как полоса пропускания 3 дБ.

Цифровые сигналы составлены из большого набора частотных компонентов, однако получать можно лишь те частоты, которые находятся внутри полосы пропускания канала. Чем больше полоса пропускания канала, тем выше может быть скорость передачи данных и тем более высокочастотные компоненты сигнала могут передаваться, поэтому может быть получено и декодировано более точное представление переданного сигнала

Полоса пропусклния сигнала
Рис. 2.7. Полоса пропусклния
Влияние полосы пропусклния на цифровые сигналы
Рис. 2.8. Влияние полосы пропусклния на цифровые сигналы

Максимальная скорость передачи данных (С) канала может быть определена из его юлосы пропускания с использованием следующей формулы выведенной математиком Найквистом (Nyquist).

C = 2 B log 2 M bps,

где В - полоса пропускания в герцах; М уровней используются для каждого элемента сигнала

В особом случае при использовании лишв двух уровней, "ВКЛЮЧЕНО" и "ВЫКЛЮЧЕНО" (двоичном):

М = 2 и С = 2 B.

В качестве примера: максимальная скорость передачи данных, по Найквисту, для канала PSTN с полосой пропускания 3100 герц для двоичного сигнала будет следующей: 2 х 3100 = 6200 bps. В реальности достижимая скорость передачи данных снижается из-за наличия в канале шума.

2.3.4. Шум

При прохождении сигналов через канал связи атомы и молекулы в среде передачи вибрируют и излучают случайные электромагнитные волны в виде шума. Обычно сила передаваемого сигнала велика по сравнению с шумовым1 сигналом. Однако по мере продвижения и затухания сигнала его уровень может сравняться с уровнем шума. Когда полезный сигнал незначительно превышает фоновый шум, приемник не может отделить данные от шума и возникают ошибки связи.

Важным параметром канала является отношение мощности полученного сигнала (S) к мощности шумового сигнала (N). Отношение S/N называется отношением сигнал/шум и выражается обычно в децибелах, сокращенно дБ.

S/N = 10 log 10 (S/N) дБ,

где S- мощность сигнала в ваттах; N- мощность шума в ваттах.

Высокое значение отношения сигнала к шуму означает, что мощность полезного сигнала высока по сравнению с уровнем шума, что ведет к хорошему качеству восприятия сигнала. Теоретическую максимальную скорость передачи данных для реального канала можно вычислить, используя закон Шеннона - Хартли (Shannon - Hartley).

C = B log 2(1 +S/N) bps,

где С - скорость передачи данных в bps; В - полоса пропускания канала в герцах; S - мощность сигнала в ваттах; N - мощность шума в ваттах.

Из этой формулы можно видеть, что увеличение полосы пропускания или увеличение отношения сигнала к шуму позволяет увеличить скорость передачи данных и что сравнительно небольшое увеличение полосы пропускания эквивалентно гораздо большему увеличению отношения сигнала к шуму.

Каналы цифровой передачи используют широкие полосы пропускания и цифровые повторители или регенераторы для воссоздания сигналов через регулярные интервалы, поддерживая приемлемые отношения сигнала к шуму. Ослабленные сигналы, получаемые регенератором, распознаются, перенастраиваются и пересылаются как почти точные копии исходных цифровых сигналов, как показано на рис. 2.9. В сигнале нет накапливаемого шума даже при передаче на тысячи километров, при условии поддержания приемлемых отношений сигнала к шуму.

Цифровля связь для уменьшения влияния шумов
Рис. 2.9. Цифровля связь

Вернуться   •   Содержание книги   •   Скачать   •   Дальше