Главы из книги
Листвин A.B. Листвин В.Н. Рефлектометрия оптических волокон (скачать PDF)


Оглавление
и
предисловие
книги


Методические ошибки
Разрешающая способность при измерении длины
→ Определение места повреждения волокон
Измерение полных и погонных потерь
Измерение потерь в сростках волокон

Часть 3. Применения OTDR.
Раздел I. Измерение длины. § 6

Определение места повреждения волокон

Оптический кабель проектируется и применяется с таким расчетом, чтобы срок службы линии передачи был не менее 25 лет. Такой кабель, если он эксплуатируется в штатном режиме, обладает высокой степенью надежности. Но все же, за 25 лет кабель может быть поврежден случайно или умышлено. Случайные повреждения кабеля происходят, в основном, при земляных работах (около 40 %), умышленно его повреждают при кражах кусков кабеля (думая, что медный) или при стрельбе по нему из охотничьих ружей. Кроме того, кабель может быть поврежден грызунами или на линии может произойти авария (подвижка грунта, наводнение, удар молнии и т.д.).

В большинстве случаев (~80 %) повреждаются сразу все волокна в кабеле, что приводит к простою линии и, соответственно, к большим финансовым потерям. Для примера, типичная стоимость простоя локальной сети за рубежом составляет около 100 тыс. долларов в минуту. Поэтому место повреждения кабеля должно быть найдено максимально быстро. Однако сделать это, учитывая большую протяженность регенерационного участка линии (типичная длина ~100 км), часто бывает сложно.

С помощью рефлектометра можно измерить с хорошей точностью (порядка нескольких метров) длину волокна от начала линии до места повреждения волокна. Однако знания длины волокна недостаточно для того, чтобы определить положение места повреждения кабеля на трассе. Для этого нужно ещё осуществить привязку рефлектограммы к местности. Сделать это необходимо потому, что длина волокна, уложенного в кабель, обычно превышает длину кабеля, а длина кабеля в свою очередь превышает длину трассы.

Общим для всех конструкций оптического кабеля является то, что деформации кабеля, неизбежно возникающие под действием окружающей среды, не должны приводить к возникновению напряжения в волокне. Только в этом случае удается избежать появления в волокне дополнительных потерь и обеспечить большой срок службы кабеля. Так, например, для достижения срока службы ~25 лет величина относительного удлинения волокна не должна превышать 0.2 %, что в несколько раз меньше допустимой величины относительного удлинения кабеля.

Наиболее простым конструктивным решением, обеспечивающим механическую развязку волокна от несущих элементов кабеля, является свободная укладка волокна в кабель в виде спирали. При этом избыток волокна должен быть достаточно большим для того, чтобы деформации, которым подвергается кабель, приводили только к изменению шага спирали, и не создавали в волокне натяжения.

Величина избытка волокна зависит от конструкции кабеля. Так, например, волокно может быть уложено в виде спирали в трубчатом модуле (пластмассовом или металлическом) (рис. 3.9). Избыток волокна в таком модуле составляет 0.4...0.8%. Эти модули обычно свиваются слоями (повивами) вокруг центрального элемента кабеля. Возникающий при этом избыток волокна может достигать уже нескольких процентов. Для оценки – при избытке волокна около 3 % на расстоянии 30 км длина волокна может превысить длину кабеля примерно на 1 км.

Возникновение избытка волокна при его укладке в модуле . Избыток волокна при его укладке в модуле
Рис. 3.9. Схема, поясняющая возникновение избытка волокна при его укладке в модуле

В свою очередь, длина кабеля может значительно (в 1.5 раза) превысить длину трассы. Происходит это потому, что кабель должен обходить различные препятствия и, кроме того, в линии имеются конструктивные запасы кабеля необходимые для его ремонта. Поэтому, несмотря на то, что с помощью рефлектометра можно с достаточно хорошей точностью измерить длину волокна от начала линии до места её повреждения, положение места повреждения волокна на местности будет известно с невысокой точностью порядка нескольких сот метров (рис. 3.10).

причины возникновения неопределенности при определении места повреждения волокна
Рис. 3.10. Схема, поясняющая причины возникновения неопределенности при определении места повреждения волокна

Неопределенность в определении места повреждения волокна можно уменьшить, представив рефлектограмму как функцию длины кабеля (а не как функцию длины волокна). Сделать это можно, если вместо группового показателя волокна установить в рефлектометре некий эффективный показатель преломления nэфф, позволяющий учесть избыток волокна в кабеле. Для того, чтобы рассчитать величину nэфф, нужно знать длину кабеля LK (её можно взять, например, из документации на кабель), групповой показатель преломления волокна nГ (он обычно указывается производителем в спецификации на волокно) и длину волокна LB (она измеряется рефлектометром).

nэфф = (LК×nГ) / LK . . . . . . . . . . . . . (3.2)

Найти величину nэфф можно и несколько иным способом, используя при вычислениях рефлектометр. Для этого надо установить курсоры на начало и конец кабельного участка известной длины и подобрать такое значение показателя преломления, при котором оптическая длина волокна будет равна физической длине кабеля.

Далее с помощью функции автопоиска надо идентифицировать все строительные длины кабелей в линии и ввести в рефлектометр соответствующий им эффективный показатель преломления. В результате рефлектограмма будет представлена, как функция длины кабельной линии.

На следующем этапе проводится привязка рефлектограммы к местности. Для этого, после завершения монтажа каждой муфты, записываются метки на кабеле с указанием его длины, а также километраж железной дороги или другого протяженного объекта, вдоль которого прокладывается кабель. В большинстве случаев такую привязку удается осуществить, так как из-за больших цен на землеотвод операторы связи стремятся использовать уже готовые инфраструктуры. Поэтому кабели часто прокладывают вдоль железных дорог ("Компания Транстелеком"), линий электропередач ("Ростелеком") или в полосе отчуждения газопроводов ("Газтелеком") и нефтепроводов ("Связьтранснефть").

Если положение муфты на местности известно, то при определении места повреждения волокон расстояние можно отсчитывать не от начала линии, а от ближайшей муфты. Это расстояние (порядка строительной длины кабеля 2…5 км) значительно меньше длины регенерационного участка линии (~100 км) и неопределенность в определении места повреждения волокна будет, соответственно, значительно меньше. Кроме того, на относительно коротком участке трассы проще учесть изгибы кабеля и его конструктивные запасы.

При строительстве линий передачи часто используется технология прокладки кабеля в грунт. В этом случае возникает проблема поиска трассы. В России в грунт обычно прокладывают кабель бронированный стальной проволокой. Поэтому поиск трассы с таким кабелем (за счет наличия в нем металла) выполнить достаточно просто. В Казахстане, а иногда и в России, применяется технология задувки (затяжки) легкого небронированного кабеля в предварительно проложенную в грунт защитную пластмассовую трубку. Для облегчения поиска трассы с таким кабелем на некотором расстоянии поверх него в землю закапывается специальная металлическая лента. На этой ленте указывается километраж, и делаются надписи о том, что под ней находится оптический кабель (а не медный).

Некоторые линии передачи, обладающие большой пропускной способностью, снабжены системой дистанционного мониторинга. Эта система позволяет проводить трассировку линии передачи по географической карте, обеспечивая соответствие между маркерами установленными на этой карте и расстояниями на рефлектограмме. При этом на электронной карте местности отображается положение всех узлов кабеля: муфт, конструктивных запасов кабеля, кабельных колодцев, изгибов кабеля и т.д. Рабочее окно карты дает возможность вводить дополнительную информацию и осуществлять поиск узлов кабеля и мест обрыва волокна.

Однако далеко не все линии передачи снабжены системами дистанционного мониторинга. Кроме того, небольшие ошибки при трассировке линии в конечном итоге приводят к большой неопределенности в определении места положения обрыва волокна. Более того, в ряде случаев, например, при прокладке линии в степи, нельзя привязать к местности положение муфт и других узлов кабеля.

Для решения этой проблемы компанией Kingfisher разработан зажим, охлаждаемый жидким азотом. Он позволяет создавать неоднородности в волокне вблизи ожидаемого места повреждения волокна и осуществить более точную привязку к местности. Неоднородности в волокне создаются за счет того, что кабель изгибается в зажиме в нескольких местах. При охлаждении этого участка кабеля жидким азотом увеличивается жесткость покрытия волокна, а так как волокно в кабеле изогнуто, то в волокне возникают микроизгибы приводящие к появлению дополнительных потерь.

Рассмотрим пример применения такого зажима. С помощью рефлектометра было измерено расстояние до места повреждения волокна. Оно получилось (по показаниям рефлектометра) равным 77.147 км. По карте видно, что на расстоянии около 77 км трасса пересекает реку. Из телефонных переговоров с компанией, осуществлявшей прокладку кабеля, было выяснено, что, скорее всего повреждение произошло в кабеле уложенном в реку. Однако было решено уточнить это место, проведя измерения с помощью охлаждаемого зажима (рис. 3.11).

Профили показателя преломления в оптоволокне G. 652
Рис. 3.11. Схема привязки места обрыва волокна в кабеле к местности с помощью охлаждаемого зажима

Охлаждаемый зажим был установлен на расстоянии порядка 40 м от берега реки, и была снята рефлектограмма трассы. Оказалось, что место повреждения волокна находится на расстоянии 98 м от зажима и на расстоянии примерно 130 м от берега реки. Т.е. место повреждения находится не в реке, как ожидалось, а на достаточно большом расстоянии от берега. Поврежденный участок кабеля выкопали и выяснили, что он был поврежден ковшом экскаватора, когда закапывали траншею с кабелем. Таким образом, удалось сэкономить значительное время и средства, которые пришлось бы затратить, доставая и укладывая новый кабель в реку.

Оглавление
и
предисловие
книги

Главы из книги
Листвин A.B. Листвин В.Н. Рефлектометрия оптических волокон (скачать PDF)

Далее из этой книги → Измерение полных и погонных потерь

Об измерениях оптоволоконными рефлектометрами с примерами рефлектограмм страница Измерения оптоволоконного кабеля (ВОЛС) в процессе монтажа