А Щедрин Новые металлоискатели для поиска кладов и реликвий
СХЕМА ВНЕШНИХ СОЕДИНЕНИЙ (РИС. 18)

На схеме внешних соединений показаны элементы, не установленные на печатной плате прибора и подключаемые к ней с помощью электрических разъемов. К таким элементам относятся:
- потенциометры настройки и балансировки R74, R75;
- датчик с кабелем и разъемом подключения;
- защитные диоды по питанию VD13, VD14;
- переключатель режимов работы S1.1-S1.6;
- измерительные приборы W1, W2;
- батареи питания;
- пьезоизлучатель Y1.

Назначение перечисленных элементов, в основном, очевидно и не требует дополнительных пояснений.

Принципиальная электрическая схема индукционного металлоискателя. Схема внешних соединений
Рис. 18. Принципиальная электрическая схема индукционного металлоискателя. Схема внешних соединений

Типы деталей и конструкция

Типы используемых микросхем приведены в табл. 5.

Таблица 5. Типы используемых микросхем
Обозначение по рис. 15-17ТипФункциональное назначение
D1
D2, D13
D3-D5, D9, D12
D6
D7-D8, D10-D11
D14
К561ЛН2
К561ТМ2
К157УД2
КР590КН4
КР140УД1408
К561ТЛ1
6 инверторов
2 D-триггера
Сдвоенный ОУ
Аналоговые ключи
Точный ОУ
4 элемента 2И-НЕ с триггерами Шмидта на входе

Вместо микросхем серии К561 возможно использование микросхем серии К1561. Можно попытаться применить некоторые микросхемы серии К176.

Сдвоенные операционные усилители (ОУ) серии К157 можно заменить любыми сходными по параметрам одиночными ОУ общего назначения (с соответствующими изменениями в цоколевке и цепях коррекции), хотя применение сдвоенных ОУ удобнее (возрастает плотность монтажа). Желательно, чтобы применяемые типы ОУ не уступали рекомендуемым типам по быстродействию. Особенно это касается микросхем D3-D5.

ОУ синхронных детекторов и интеграторов ФВЧ по своим параметрам должны приближаться к прецизионным ОУ. Кроме типа, указанного в таблице, подойдут К140УД14, 140УД14. Возможно применение микромощных ОУ К140УД12, 140УД12, КР140УД1208 в соответствующей схеме включения. К применяемым в схеме металлоискателя резисторам не предъявляется особых требований. Они лишь должны иметь прочную и миниатюрную конструкцию и быть удобны для монтажа. С целью получения максимальной термостабильности следует использовать в схемах датчика, интеграторов и в схеме компенсации только металло-пленочные резисторы. Номинал рассеиваемой мощности 0,125...0,25 Вт.

Терморезистор R73 должен иметь отрицательный ТКС и номинал около 4,7 кОм. Рекомендуемый тип КМТ -17 Вт. Потенциометры компенсации R74, R75 желательны многооборотные типа СП5-44 или с нониусной подстройкой типа СП5-35. Можно обойтись и обычными потенциометрами любых типов. В этом случае желательно их использовать два. Один - для грубой подстройки, номиналом 10 кОм, включенный в соответствии со схемой. Другой -для точной подстройки, включенный по схеме реостата в разрыв одного из крайних выводов основного потенциометра, номиналом 0,5... 1 кОм.

Конденсаторы С45, С49, С51 - электролитические. Рекомендуемые типы - К50-29, К50-35, К53-1, К53-4 и другие малогабаритные. Остальные конденсаторы, за исключением конденсаторов колебательного контура датчика, -керамические типа К10-7 (до номинала 68 нФ) и металло-пленочные типа К73-17 (номиналы выше 68 нФ).

Конденсатор контура С61 - особый. К нему предъявляются высокие требования по точности и термостабильности. Конденсатор С61 состоит из нескольких (5...10 шт.) конденсаторов, включенных параллельно. Настройка контура в резонанс осуществляется подбором количества конденсаторов и их номинала. Рекомендуемый тип конденсаторов К10-43. Их группа по термостабильности - МП0 (т.е. приблизительно нулевой ТКЕ). Возможно применение прецизионных конденсаторов и других типов, например, К71-7. В конце концов, можно попытаться использовать старинные термостабильные слюдяные конденсаторы с серебряными обкладками типа КСО или какие-либо полистирольные конденсаторы.

Диоды VD1-VD12 типа КД521, КД522 или аналогичные кремниевые маломощные. В качестве диодов VD1-VD4 и VD5-VD8 удобно также использовать интегральные мостовые диодные сборки типа КД906. Выводы (+) и (-) диодной сборки спаиваются вместе, а выводами (~) она включается в схему вместо четырех диодов. Защитные диоды VD13-VD14 типов КД226, КД243, КД247 и другие малогабаритные на ток от 1 А.

Микроамперметры - любого типа на ток 50 мкА с нулем посередине шкалы (-50 мкА...0...+50 мкА). Удобны малогабаритные микроамперметры, например типа М4247. Кварцевый резонатор Q - любой малогабаритный часовой кварц (аналогичные используются также в портативных электронных играх). Переключатель режимов работы - любого типа малогабаритный поворотный галетный или кулачковый на 5 положений и 6 направлений. Батареи питания типа 3R12 (по международному обозначению) или "квадратные" (по нашему).

Пьезоизлучатель Y1 - может быть типа ЗП1-ЗП18. Хорошие результаты получаются при использовании пье-зоизлучателей импортных телефонов (идут в огромных количествах "в отвал" при изготовлении телефонов с определителем номера).

Разъемы Х1-ХЗ - стандартные, под пайку на печатную плату, с шагом выводов 2,5 мм. Подобные разъемы широко применяются в настоящее время в телевизорах и другой бытовой технике. Разъем Х4 должен быть наружного исполнения, с металлическими наружными деталями, желательно - с посеребренными или позолоченными контактами и герметичным выходом на кабель. Рекомендуемый тип - РС7 или РС10 с резьбовым или байонетным соединением.

Печатная плата

Индукционный металлоискатель. Топология дорожек печатной платы. Вид со стороны деталей
Рис. 19. Топология дорожек печатной платы. Вид со стороны деталей
Индукционный металлоискатель.Топология дорожек печатной платы. Вид со стороны пайки
Рис. 20. Топология дорожек печатной платы. Вид со стороны пайки

Конструкция прибора может быть достаточно произвольной. При ее разработке следует учесть рекомендации, изложенные ниже в параграфах, посвященных датчикам и конструкции корпусов. Основная часть элементов принципиальной схемы прибора размещается на печатной плате.

Печатная плата электронной части металлоискателя может быть изготовлена на основе готовой универсальной макетной печатной платы под DIP корпуса микросхем с шагом 2,5 мм. В этом случае монтаж ведут одножильным медным луженым проводом в изоляции. Такая конструкция удобна для экспериментальной работы.

Более аккуратная и надежная конструкция печатной платы получается при разводке дорожек традиционным способом под заданную схему. Ввиду ее сложности, в этом случае печатная плата должна быть с двухсторонней металлизацией. Использованная автором топология печатных дорожек приведена на рис. 19 - сторона печатной платы со стороны установки деталей и на рис. 20 - сторона печатной платы со стороны пайки. Рисунок топологии приведен не в натуральную величину. Для удобства изготовления фотошаблона автор приводит размер печатной платы по внешней рамке рисунка - 130x144 (мм).

Особенности печатной платы:

- перемычки, без которых разводка печатной платы оказалась невозможной;

- общую шину, которая выполнена в виде сетчатого рисунка максимально возможной площади на плате;

- расположение отверстий по узлам сетки с шагом 2,5 мм, - минимальное расстояние между центром отверстия и средней линией проводника или между средними линиями двух соседних проводников - 1,77 мм;

- направление прокладки отдельных проводников печатной платы по углу кратно 45°.

Плотность проводников на печатной плате не слишком высока, что позволяет изготовить рисунок под травление в домашних условиях. Для этого рекомендуется использовать тонкий стеклянный рейсфедер или иглу шприца со спиленным острием в комплекте с пластиковой трубкой.

Рисунок обычно выполняют нитрокраской, кузбасс-лаком, цапон-лаком и т.п. красителями, разбавленными подходящими растворителями до удобной концентрации.

Обычный реагент для травления стандартной печатной платы из стеклотекстолита с медной фольгой 35...50 мкм -водный раствор хлорного железа FeCI3. Известны и другие способы изготовления печатных плат в домашних условиях. Расположение деталей на печатной плате приведено на рис. 21 (микросхемы, разъемы, диоды" и кварцевый резонатор), на рис. 22 (резисторы и перемычки) и на рис. 23 (конденсаторы).

Металлоискатель. Расположение элементов на печатной плате. Разъемы, микросхемы, диоды и кварцевый резонатор
Рис. 21. Расположение элементов на печатной плате. Разъемы, микросхемы, диоды и кварцевый резонатор
Индукционный металлоискатель. Расположение элементов на печатной плате. Резисторы
Рис. 22. Расположение элементов на печатной плате. Резисторы
Металлоискатель. Расположение элементов на печатной плате. Конденсаторы
Рис. 23. Расположение элементов на печатной плате. Конденсаторы

Налаживание прибора

Налаживать прибор рекомендуется в следующей последовательности.

1. Проверить правильность монтажа по принципиальной схеме. Убедиться в отсутствии коротких замыканий между соседними проводниками печатной платы, соседними ножками микросхем и т.п.

2. Подключить батареи или двуполярный источник питания, строго соблюдая полярность. Включить прибор и измерить потребляемый ток. Он должен составлять по каждой шине питания около 40 мА. Резкое отклонение измеренных значений от указанной величины свидетельствует о неправильности монтажа или неисправности микросхем.

3. Убедиться в наличии на выходе генератора чистого меандра с частотой около 32 кГц.

4. Убедиться в наличии на выходах триггеров D2 меандра с частотой около 8 кГц.

5. Убедиться в наличии на выходе первого интегратора пилообразного напряжения, а на выходе второго - практически синусоидального с нулевыми постоянными составляющими.

Внимание!

Дальнейшую настройку прибора необходимо проводить при отсутствии вблизи катушки датчика металлоискателя крупных металлических предметов, включая измерительные приборы! В противном случае, при перемещении этих предметов или при перемещении датчика относительно них прибор расстроится, а при наличии крупных металлических предметов вблизи датчика настройка будет невозможной.

6. Убедиться в работоспособности усилителя мощно- сти по наличию на его выходе синусоидального напряжения частотой 8 кГц с нулевой постоянной составляющей (при подключенном датчике).

7. Настроить колебательный контур датчика в резонанс путем подбора количества конденсаторов колебательного контура и их номинала. Контроль настройки производится грубо - по максимальной амплитуде напряжения контура, точно - по сдвигу фазы в 180° между входным и выходным напряжениями усилителя мощности.

8. Заменить резисторный элемент датчика (резисторы R71-R73) постоянным резистором. Подобрать его величину так, чтобы входное и выходное напряжения усилителя мощности были равны по амплитуде.

9. Убедиться в работоспособности приемного усилителя, для чего проверить режим его ОУ и прохождение сигнала.

10. Убедиться в работоспособности схемы компенсации высших гармоник. Потенциометрами настройки R74, R75 добиться минимума сигнала основной гармоники на выходе приемного усилителя. Подбором дополнительного резистора R8 добиться минимума высших гармоник на выходе приемного усилителя. При этом произойдет некоторый разбаланс по основной гармонике. Устранить его настройкой потенциометрами R74, R75 и вновь добиться минимума высших гармоник с помощью подбора резистора R8, и так несколько раз.

11. Убедиться в работоспособности синхронных детекторов. При правильно настроенном датчике и при правильно настроенной схеме компенсации выходные напряжения синхронных детекторов устанавливаются в ноль приблизительно при среднем положении движков потенциометров R74, R75. Если этого не происходит (при отсутствии ошибок в монтаже), необходимо точнее настроить контур датчика и точнее подобрать его резисторный элемент. Критерием правильной окончательной настройки датчика является балансировка прибора (т.е. установка нуля на выходах синхронных детекторов) в среднем положении движков потенциометров R74, R75. При настройке следует убедиться, что вблизи состояния балансировки на движение рукоятки потенциометра R74 реагирует только прибор W1, а на движение рукоятки потенциометра R75 - только прибор W2. Если движение рукоятки одного из потенциометров вблизи состояния балансировки отражается на двух приборах одновременно, то с такой ситуацией следует либо смириться (при этом несколько труднее будет балансировать прибор при каждом включении), либо точнее подобрать номинал конденсатора С14.

12. Убедиться в работоспособности фильтров. Постоянная составляющая напряжения на их выходах не должна превышать 100 мВ. Если это не так, следует сменить конденсаторы С35, С37 (даже среди пленочных типа К73-17 попадаются бракованные с сопротивлением утечки единицы - десятки мегаом). Может потребоваться и замена ОУ D10 и D11. Убедиться в реагировании фильтров на полезный сигнал, который можно сымитировать небольшими поворотами рукояток R74, R75. Наблюдать выходной сигнал фильтров удобно непосредственно с помощью стрелочных приборов W1 и W2. Убедиться в возврате выходного напряжения фильтров в нуль после воздействия сигналов большой амплитуды (не позже, чем через пару секунд).

Может так оказаться, что неблагоприятная электромагнитная обстановка затруднит наладку прибора. В этом случае стрелки микроамперметров будут совершать хаотические или периодические колебания при настроенном состоянии прибора в положениях переключателя S1 "Режим 1" и я "Режим 2". Описанное нежелательное явление объясняется наводками высших гармоник сети 50 Гц на катушку датчика. На значительном удалении от проводов с электричеством колебания стрелок при настроенном приборе должны отсутствовать. Аналогичное явление может наблюдаться и при самовозбуждении ОУ интеграторов.

13. Убедиться в работоспособности дискриминатора и схемы формирования звукового сигнала.

14. Произвести термическую компенсацию датчика. Для этого сначала необходимо настроить и отбалансировать металлоискатель с резистором вместо резистивного элемента датчика. Затем немного нагреть датчик на батарее отопления или охладить в холодильнике. Отметить, в каком положении движка потенциометра "металл" R74 будет достигаться балансировка прибора при изменившейся температуре датчика. Замерить сопротивление резистора, временно установленного в датчике, и заменить его на цепь R72, R73, R78 с термистором и с резисторами таких номиналов, чтобы суммарное сопротивление указанной цепи было бы равно сопротивлению заменяемого постоянного резистора. Выдержать датчик при комнатной температуре не менее получаса и повторить эксперимент с изменением температуры. Сравнить полученные результаты. Если точка балансировки по шкале движка R74 смещается в одну сторону, значит, датчик недокомпенсирован и необходимо усилить влияние термистора, ослабив шунтирующее действие резистора R72, для чего увеличить его сопротивление, а сопротивление добавочного резистора R71 - уменьшить (для сохранения значения сопротивления всей цепочки постоянной). Если же точка балансировки для этих двух экспериментов смещается в разные стороны, то датчик перекомпенсирован и необходимо ослабить влияние термистора, усилив шунтирующее действие резистора R72, для чего уменьшить его сопротивление, а сопротивление добавочного резистора R71 - увеличить (для сохранения величины сопротивления всей цепочки постоянной). Проведя несколько экспериментов с подбором резисторов R71 и R72, необходимо добиться, чтобы настроенный и отбалансированный прибор не терял способности для балансировки при изменении температуры на 40 °С (охлаждение от комнатной температуры до температуры морозильной камеры холодильника).

При наличии неполадок и отклонений в поведении отдельных узлов схемы металлоискателя следует действовать по общепринятой методике:

- проверить отсутствие самовозбуждения ОУ;

- проверить режимы ОУ по постоянному току;

- сигналы и логические уровни входов/выходов цифровых микросхем, и т.д. и т.п.

Дальше: 2.5 Импульсный металлоискатель

Содержание книги на странице: